Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insufficient Convergence of Inverse Mean Curvature Flow on Asymptotically Hyperbolic Manifolds

We construct a solution to inverse mean curvature flow on an asymptotically hyperbolic 3-manifold which does not have the convergence properties needed in order to prove a Penrose–type inequality. This contrasts sharply with the asymptotically flat case. The main idea consists in combining inverse mean curvature flow with work done by Shi–Tam regarding boundary behavior of compact manifolds. As...

متن کامل

Inverse Scattering on Asymptotically Hyperbolic Manifolds

Scattering is deened on compact manifolds with boundary which are equipped with an asymptotically hyperbolic metric, g: A model form is established for such metrics close to the boundary. It is shown that the scattering matrix at energy exists and is a pseudo-diierential operator of order 2 + 1 ? dim X: The symbol of the scattering matrix is then used to show that except for a discrete set of e...

متن کامل

Hyperbolic flow by mean curvature

A hyperbolic flow by mean curvature equation, l t #cv"i, for the evolution of interfaces is studied. Here v, i and l t are the normal velocity, curvature and normal acceleration of the interface. A crystalline algorithm is developed for the motion of closed convex polygonal curves; such curves may exhibit damped oscillations and their shape appears to rotate during the evolutionary process. The...

متن کامل

Radiation Fields, Scattering and Inverse Scattering on Asymptotically Hyperbolic Manifolds

We define the forward and backward radiation fields on an asymptotically hyperbolic manifold and show that they give unitary translation representations of the wave group, and as such can be used to define a scattering matrix. We show that this scattering matrix is equivalent to the one defined by stationary methods. Furthermore, we prove a support theorem for the radiation fields which general...

متن کامل

Existence and Uniqueness of Constant Mean Curvature Foliation of Asymptotically Hyperbolic 3-manifolds

We prove existence and uniqueness of foliations by stable spheres with constant mean curvature for 3-manifolds which are asymptotic to Anti-de Sitter-Schwarzschild metrics with positive mass. These metrics arise naturally as spacelike timeslices for solutions of the Einstein equation with a negative cosmological constant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2010

ISSN: 0022-040X

DOI: 10.4310/jdg/1271271798